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A universal curve relating the maximum of thermal conductivity and its respec- 
tive temperature with the residual electrical resistivity has been proposed for 
metals and dilute alloys. Based on the equation of that curve, a comparative 
analysis of selected literature data of thermal conductivity of metals, which have 
residual electrical resistivity in the range 10 -II <P0 < 10-50  .cm, have been 
performed. Using the data for 33 metals, confirmation of the Wiedemann Franz 
law for the impurity component fl/T of thermal conductivity was obtained, 
which means that fl th/fleI ~ 1, where flth and fl~j are the parameters of the 
electron-lattice defect interaction obtained from measurements of thermal 
and electrical conductivity, respectively. Examples of the failure of the 
Wiedemann-Franz law are also presented, exhibiting the values of flth/fl~I in the 
range 0.16 to 25. Measurements of thermal conductivity in the range 2 to 20 K 
and determination of the residual electrical resistivity for the samples of Cd 
doped with Zn and quenched were performed, resulting in values f l t h / f i e l  ~ 1. 

KEY WORDS: alloys; electrical resistivity, low temperature; metals; thermal 
conductivity; Wiedemann-Franz law. 

1. I N T R O D U C T I O N  

For the majority of metals and their dilute alloys, in the region of maxi- 
mum thermal conductivity k, the lattice component kl can be neglected in 
comparison to the electronic component ke. Detailed analysis of conditions 
for the validity of k~ ~ k~ is given in Ref. 1. 

Assuming that Matthiessen's rule is satisfied for thermal resistivity, the 
total thermal resistivity W of a metal at low temperatures can be written 
as follows: 

l 1 fl 
W . . . . . .  t - A T 2 + C T 4 + D T  4 (1) 

k - k ~  T 
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where ~/T is related to elastic scattering of electrons on chemical impurities 
and physical defects; AT2+CT 4 is related to inelastic scattering of 
electrons by phonons; DT 4 is related to elastic scattering of electrons 
by phonons, and/?, A, C, and D are constant factors. 

Terms with T 4 a r e  important at relatively high temperatures, and for 
T<  1.5Tmax Eq. (1) can be approximated [2] by 

W=fl--+ A1 T2 (2) 
T 

It follows from analysis of available data of k(T) for metals that replacing 
exponent 2 in the above equation by an exponent n :P 2 allows most often 
for better fitting of experimental points to Eq. (2). According to Ref. 3, the 
value n > 2 can be ascribed to the fact that the phonon energy spectrum of 
metals deviates from the Debye model. Therefore [2], 

fl T n A2 (3) 

Despite the experimental findings that, for relatively impure samples, 
n can be a function of/~ [4], it is generally accepted that the value of n is 
the characteristic parameter of a particular metal and can vary from 2, e.g., 
for Ga, to 4.5 for Cd [5]. 

In Ref. 6 the so-called recommended curves of k(T) for metals are 
presented, generally approximated by Eq. (3), but with the assumption of 
dependence between the ideal and the impurity components of thermal 
resistivity (deviation from Matthiessen's rule): 

W=~-+c(T" (4) 
T 

where off=off'(~/rtoff') (m-n)(rn+l), and m, n, and ~" are constants, charac- 
teristic for the metal [-2]. 

2. THE DEPENDENCE kmax/Tma x =f(P0) 

Let us repeat after Cezairliyan [2] the calculation of the value of the 
quotient kmax/Tmax from the condition for the maximum of the function W 
in Eq. (3). After simple transformations we obtain 

I (nn~ I/(n+ 
/ max -- (n + 1) 

= (__.__~__~ ~ l/(n+ 1) 

Tmax \hA2 ) 

(5) 

(6) 
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Hence, 

kmax 
Trnax = ~ ~ (7) 

Thus the quotient kmax/Tmax is inversely proportional to the parameter fl, 
determining the scattering of electrons on chemical impurities and physical 
defects, and depends on the value of n, constant for the particular metal. 
Since we assumed earlier that fl is related exclusively to elastic scattering, 
we may apply the Wiedemann-Franz law to the impurity electronic 
thermal resistivity (tilT), obtaining 

/~ = p o  ( 8 )  
L0 

where Po is the residual electrical resistivity of the metal and Lo is the ideal 
Lorenz number, which is 2.45 x 10 -8 W.  ~2. K - 2  

Let us denote the value of fl determined from measurements of thermal 
conductivity [-using, e.g., Eq. (3) or (7)] by flth and the value of fl 
determined from measurements of electrical conductivity [Eq. (8)] by fl~t- 
Therefore, 

km"~ fle~( n ) L~ (9) 

Tmax flth -ff-~ P--~O 

Equation (9) should be the universal one for metals and their dilute alloys, 
relating the maximum of the thermal conductivity and its respective 
temperature with the residual electrical resistivity. In cases when the 
Wiedemann-Franz law is valid, flel = flth" 

Recently, there have been several works published in which (for some 
samples) departure from the Wiedemann-Franz law is reported for 
impurity electronic thermal resistivity in indium [7],  copper [8, 10], 
copper and silver [9],  copper, silver, and aluminum [11], and tin doped 
with zinc [12]. In Ref. 13 some investigations of Refs. 8 and 9 were 
repeated, using the same materials as in Refs. 8 and 9, and no deviation 
from the Wiedemann-Franz law was found. In the majority of the 
investigations cited above, where a deviation was found, the samples were 
mechanically deformed in various ways, and the failure of the Wiedemann- 
Franz law was explained, generally, by additional, inelastic scattering: 
electron-vibrating dislocation or electron kink. 

In view of these divergent results, the present authors decided to verify 
the degree of agreement of Eq. (9) using a large number of experimental 
data. For simplicity, n = 2 was assumed for all the metals. The values of 
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,k . . . .  Zmax, and P0 for 33 various metals were taken from the so-called 
recommended curves k(T)  for metals from the data compiled by the Ther- 
mophysical Properties Research Center (TPRC) at Purdue University [6]. 
All the metals (with the exception of those having no distinct maximum of 
thermal conductivity) with P0 value less than 0.5 x 10 - 6 0 .  cm were taken 
into account. The last criterion, proposed by Klemens [1], distinguishes 
the metals with the lattice component negligibly small in the simplest way. 
Ruthenium was not considered, too, because TPRC data for the metal are 
inconsistent with the results of measurements performed by White [-22]. 
Figure 1 presents collection of the data in the form of the relation 
kmaJTmax versus 1/po. The points marked with an asterisk in Fig. 1 
correspond to the following metals: aluminum, beryllium, cadmium, 
cesium, chromium, cobalt, copper, gallium, gold, indium, iridium, iron, 
lead, lithium, magnesium, molybdenum, nickel, niobium, osmium, 
palladium, platinum, potassium, rhenium, rhodium, rubidium, silver, 
sodium, tantalum, tungsten, thallium, tin, zinc, and zirconium. Metals, 
which characterize themselves by the anisotropy of thermal and electrical 
conductivity, were accepted as such. The best fit (least-squares method) of 
these experimental points in Fig. 1 was obtained for the curve described by 
the equation 

y = a x  p (10) 

7 ,,,,.. 

T 
E 
C) 

E 
I.-- 

E 

100  

0.1 

10 

10 7 10 ~ 10 9 10 ~0 

1/ .9o , o h m  -1. c m  -1 

Fig. 1. Dependence of kmax/Tmax on 1/p o for 33 metals(listed in 
text), according to TPRC-recommended curves. 



Thermal Conductivity of Metals and Dilute Alloys 1089 

where 

y = k m a x / T m a x  

a =  1.5223 x 10 -8 W . 1 2 . K - 2  

x = t /po  

p = 1.00615. 

Obtaining a value of the exponent p very close to unity suggests that the 
experimental data are well represented by Eq. (9). Approximating the value 
of p by unity, one obtains the value flel/flth- 0.93. Alternatively, accepting 
that the obtained deviation of p from 1 is essential, thus adopting 
p =  1.00615, and calculating the integral average value of the function 
y ( x ) / x  in the range of variation o f x  from 2 x 106 to  5 X 10100 -1  .cm -1 one 
obtains the averaged value #el/#th = 1.08 for the range of Po values from 
0 . 5 X 1 0  -6  to 2 x l 0 - ~ l l 2 . c m .  It would be rather difficult to determine 
exactly the real error of the value of #,l/#th thus obtained. It should be 
remembered that the data for Fig. 1 were obtained in several tens of 
laboratories across the world over a period of several years. The authors of 
Ref. 6 have indicated that the error of the TPRC recommended curves 
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Fig. 2. Dependence of kmax/Tm~x on 1/po for ([]) A1 samples of 
various purity [14], f l m / # , ~ l ;  (*) RE selected (see text) samples, 
flth/fl~l ~ 0.17 ~ 0.53; (O) Cu sample, deformed [8], flth/flel ~ 23; (x) Ag 
sample, annealed [11], flth/#~x ~ 25. Curve A was drawn according to 
Eq. (10). 
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(used by us here) may sometimes be as high as 15%; the error of Po is 
usually within a few percent. 

Considering the above-mentioned facts, the present authors believe 
that for the TPRC-recommended curves of thermal conductivity of metals, 
hence for samples of the highest attainable chemical purity and subjected 

Table I. The Quotient of the Electron-Lattice Defect Interaction Parameters, Determined 
from the Thermal and Electrical Conductivity Values:/3th//~ J 

Sample Refi 

Metal specification Treatment P0 (f2. cm) flth/flel No. 

AI Spec. 1 Annealed 1.3 x 10 -1~ 0.99 14 
A1 Spec. 2 Annealed 2.45 x 10 .8 1.06 14 
A1 FRW1 Annealed 5.7 x 10 -1~ 0.99 14 
A1 P.H.R.IV Annealed 2.8 x 10-v 0.98 14 

Sn 99.9%, s.c. (100)  Annealed ~ 2  x 10 -8 1.1 18 
Sn 99.99%, s.c. (100)  Annealed ~0.8 x 10 -8 1.1 18 
Sn 99.9%, s.c. (111)  Annealed ~2.7 x 10 -8 1.0 18 
Sn 99.99%, s.c. (111)  Annealed ~0.9 x 10 .8 1.1 18 
Sn 99.9%, s.c. (001)  Annealed ~3  x 10 -8 0.9 18 
Sn 99.99%, s.c. (001)  Annealed ~ 1.2 x 10 -8 1.0 18 

Sn +0.04% Zn, s.c. (001)  Quenched 2.12 x 10 -8 2.0 12 
Sn +0.1% Zn, s.c. (001)  Quenched 3.32 x 10 -8 2.9 12 
Sn +0.1% Zn, s.c. (010)  Quenched 2.67 x 10 -8 2.1 12 
Sn +0.04% Zn, s.c. (010)  Quenched 1.49 x 10 .8 2.0 12 

Cu TPRC r.c. Annealed 8.51 x 10 -1~ 0.98 6 

Cu Spec. 1 Deformed P300/P4.2 = 6700 ~ 23 8 

Ag 6N Annealed 8.1 x 10 -1~ 1.06 17 

Ag 6N Annealed RRR = 3330 ~ 25 11 

Cd <0.18% Zn, s.c., all b 
Cd Cd 24 Quenched 0.73 x 10 .8 1.0 TW 
Cd Cd 21 Quenched 0.85 x 10 .8 1.0 TW 
Cd Cd 23 Quenched 0.96 x 10 .8 0,8 TW 
Cd Cd 25 Quenched 3.24 x 10 .8 0.9 TW 

Ho TPRC r.c. Annealed 7.32 x 10 .6 0.17 6 

Er TPRC r.c. Annealed 3.79 x 10-6 0.53 6 

Gd TPRC r.c. Annealed 2.41 • 10 -6 0.31 6 

a s.c., single crystal; (. . .) ,  crystallographic direction; TPRC 
RRR, residual resistances ratio; TW, this work. 

b The angle between the longitudinal axis of the specimen 
< - 1 1 ~ 0 ) ,  18~ and <10i0),  12 ~ . 

r.c., TPRC-recommended curve; 

and the direction (00131), 88~ 
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to careful annealing, in the limits of the above-performed analysis, the 
Wiedemann-Franz law for the ~/T component of electronic thermal 
conductivity is satisfied. Thus, the electron-defect scattering is, in this case, 
an elastic one. 

The question then arises, What are the limits of the applicability of the 
Wiedemann-Franz law in a metal with varying chemical purity? As an 
example, aluminum was chosen, for which results of measurements of 
thermal conductivity for a wide range of Po, from 1.3x 10 -1~ to 
2.8x 10-7(2-cm, can be found [-14]. The results are presented in Fig. 2. 
Curve A in Fig. 2 was drawn according to Eq. (10). Positioning of the 
experimental points for A1 with respect to the universal curve A allows one 
to draw the conclusion that the electron-defect scattering is, in this case, an 
elastic one. 

The quotient /~th//~el may serve as a sensitive deviation from the 
Wiedemann-Franz law for the flIT component of thermal conductivity. 
Table I lists the values of /~th//~el for various metals, calculated from 
Eqs. (7) and (8), on the basis of experimental data from a few, arbitrarily 
chosen papers. It can be seen that for A1 samples of various purity, in the 
limits of a few percent error in k and Po, values of/~th//~el close to unity 
were obtained, which demonstrates applicability of the Wiedemann-Franz 
law in this cage. 

3. DEVIATIONS FROM THE PROPOSED UNIVERSAL 
DEPENDENCE FOR THE CASE I~th/l~e~ < 1 

Points marked with an asterisk in Fig. 2 were obtained using the 
thermal conductivity curves recommended by the TPRC and Po values for 
the metals, for which P0 > 0.5 x 10-6s �9 cm: gadolinium, holmium, erbium, 
dysprosium, hafnium, lanthanum, lutetium, titanium, thulium, and 
vanadium I-6]. The majority of these elements are the rare earths. The 
greatest deviations from the recommended curve A are for holium and 
gadolinium, flth/flel=O.17 and 0.31, respectively (cf. Table I). The curve 
k(T) used by us for holmium is almost identical to that of Ref. 15. The 
authors of that paper obtained the value L0=9 .10x  1 0 - s W . O . K  -2, 
which, according to their opinion, is the result of not considering the 
importance in this metal of phonon and magnon components of thermal 
conductivity. Similarly, the authors of Ref. 16, based on their results of 
measurements of thermal and electrical conductivity of one gadolinium and 
two terbium samples, obtained values of Lo equal to 7.1 x 10 -8, 5.16 • 10 -8 
and 5.53 • 10 -SW-f2 .K  -2, respectively. In these materials, besides the 
electron component of thermal conductivity, there are other mechanisms of 
transport that contribute to the total thermal conductivity of these rare 
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earths [16]. Failing to consider these mechanisms is the reason for posi- 
tioning the respective points for rare earths above the universal curve A in 
Fig. 2. 

4. D E V I A T I O N S  F R O M  THE P R O P O S E D  U N I V E R S A L  
DEPENDENCE FOR THE CASE [~th/~el > 1 

In the case ]~th/l~el > 1, the points obtained from Eq. (9) will fall below 
the universal curve in Figs. 1 and 2. In Fig. 2, a point (marked with an 
"X") corresponding to the experimental data of Ref. 11 for one sample of 
Ag (purity 6N, annealed) and another point (marked with an "O") corre- 
sponding to the experimental data of Ref. 8 for one sample of Cu (mechani- 
cally deformed) were included as an example. Our estimation of the values 
of kmax/Tmax and P0 for the two points was accomplished exploiting the 
characteristics of kel (determined from the Wiedemann-Franz law) presented 
in Refs. 11 and 8 and k versus temperature and Eqs. (7) and (8) of the 
present work. In the both cases, a strong deviation of the respective points 
from curve A is visible, exceeding several times the error of estimation of 
kmax/Tmax and Po values. We estimated the value of/~th/]~ei for the first of 
these samples (Ag, annealed) to be about 25; that for the second (Cu, 
deformed), about 23 (cf. Table I). In both cases, according to the authors 
of the respective works, the lack of fulfillment of the Wiedemann-Franz 
law is supposed to be connected, speaking generally, with the inelastic 
interaction of electrons with lattice defect, influencing the thermal conduc- 
tivity more strongly than the electrical conductivity. To the authors of the 
present work, the fact that this hypothetical effect of inelastic scattering 
would appear in the 6N-purity, undeformed, annealed sample of Ag is 
rather surprising. We present in Table I, for comparison, the value 
]~th/]~l = 1.06, which we estimated on the basis of the results of Ref. 17, 
where a 6N,purity, nondeformed, annealed sample of Ag was also 
investigated. 

Let us now compare the results for Sn single-crystal samples of various 
purity, subjected to the process of either annealing [18] or quenching [12] 
(Table I). The values of ]~th//~l for the annealed samples of Sn are close to 
unity, in the limits of k and p determination error. On the other hand, 
the values of /~th//~l for quenched Sn samples, estimated to fall in the 
range 2.00 to 2.91, exceed strongly the theoretical value i and cannot be 
explained by a few percent error of k and Po determination. This suggests 
the possibility of the existence of an additional mechanism of electron 
scattering, increasing the total thermal resistivity but not influencing 
essentially the electrical conductivity. Such a mechanism could be provided 
by inelastic electron-vibrating dislocation scattering or (proposed on 
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theoretical grounds by Mukhin [19]) electron-kink inelastic scattering. 
The other possibility--inelastic scattering on chemical impurities (found in 
electrical conductivity of light metals by Koshino [20] in the early 
sixties)--seems less probable in this case, since for the Sn samples of 
similar purity, but annealed, it did not exhibit itself [18]. 

Trying to relate the values of flth/fl~l > 1 obtained for the quenched Sn 
to the inelastic electron-dislocation scattering, one should consider the 
following facts. 

(a) The quenching of a metal sample may lead to a considerable 
amount of frozen-in point defects and dislocations which were in thermo- 
dynamic equilibrium at the starting temperature of the quenching process. 

(b) During the quenching process very strong thermal stresses 
appear. If these stresses exceed the plastic limit of the metal, the plastic 
deformation will generate a considerable amount of crystal lattice defects. 

(c) The height of k maximum in the quenched Sn sample is 
remarkably lower than the height of the maximum in samples of a similar 
degree of purity but subjected to annealing [18]. 

(d) The majority of works reporting deviations from the 
Wiedemann-Franz law for the /3[ T component of thermal conductivity 
concerns mechanically deformed samples. If the plastic limit were really 
exceeded in Sn in the process of quenching, the plastic deformation would 
appear in these samples. 

5. THERMAL AND ELECTRICAL MEASUREMENTS OF 
ZINC-DOPED CADMIUM 

The hypothesis of the possibility of occurrence of inelastic electron- 
crystal lattice defect scattering in a quenched metal sample was one of the 
reasons for which the present authors conducted measurements of thermal 
and electrical conductivity of quenched samples of Zn-doped cadmium 
(from 0.007 to 0.18 wt% Zn). Importantly, in the case of slow cooling of 
the doped metal samples from melting to room temperature, the chemical 
impurities can group in the region of dislocations, while in the case of 
quenching one obtains more uniform distribution of the impurities [21]. 

The thermal conductivity of Cd:Zn was measured by the method of 
stationary, axial heat flow. The electrical conductivity of the samples was 
measured potentiometrically, with the aid of a superconducting modulator 
enabling determination of voltages as low as 10-I~ The values p 
measured in the range of temperatures from 2 to 4.2 K were extrapolated 
to the value Po (0 K). Prior to thermal measurements, the samples were 
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Fig. 3. Temperature dependence of thermal conductivity for Cd:Zn 
samples, quenched: ([3) Cd No. 25, po=3.24x10-sf2.cm; (*) Cd 
No. 23, p0=0.96x10 8g2.cm; (�9 Cd No. 21, p0=0.85x10 8~.cm; 
(+)  Cd No. 24, Po =0.73 x 10-8f2 .cm. 

quenched from a temperature close to melting down to room temperature 
by immersion of the hot container with the samples into LN 2. 

In Fig. 3, we present the dependence of thermal conductivity on 
temperature for four samples of Cd doped with Zn. Table I lists the values 
of flth/flel for these samples. Within the accuracy limits of k and p 
measurements, it was found that flth/[3el is close to unity, which suggests the 
nonexistence of inelastic electron-crystal lattice defect scattering in the [3IT 
component of the thermal conductivity of the quenched cadmium samples 
investigated by us. 

Assuming that point b in Section 4 may play an essential part in the 
quenched metal, the different results of measurements for the quenched tin 
and cadmium may reflect different mechanical properties of these materials 
(different plastic limits in Sn and Cd). 

6. CONCLUSIONS 

A universal dependence, given by Eq. (9), relating the thermal and 
electrical conductivities of metals, is proposed. 

Using this relation (for n = 2) and on the basis of the 33 TPRC-recom- 
mended curves, the averaged value ~Jflth=0.93 was obtained. This 
suggests confirmation of the validity of the assumptions adopted and non- 
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existence of inelastic electron-lattice defect scattering, in the experimental 
data analyzed. 

The positioning of the experimental results above the universal curve 
described by the proposed equation, Eq. (9), flth//~el< 1, or below it, 
flth//~l > 1, means, in both cases, failure of the Wiedemann-Franz law for 
the fi/T component of thermal conductivity of metals. In the first case, 
there are additional mechanisms increasing thermal conductivity (e.g., in 
rare earths); in the second, one can expect the existence of additional, 
inelastic mechanisms of electron scattering on the lattice defects, increasing 
the thermal resistivity (e.g., in Sn doped with Zn and quenched). 

The measurements performed by us of the electrical and thermal 
conductivity in Cd, doped with Zn and quenched, have shown that there 
was no inelastic electron-lattice defect scattering in the investigated samples 
observable within the limits of experimental error of k and p determination. 
It means that the Wiedemann-Franz law for the ~/T component of thermal 
conductivity holds in that case. 

7. F I N A L  R E M A R K S  

The present state of research does not allow one to create a uniform 
and consistent image of the validity (or failure) of the Wiedemann- 
Franz law for impurity, electronic thermal resistivity in the case of metals 
with the electronic thermal conductivity component dominating 
(Po < 0.5 x 10-60. cm). Considering the relatively great number of works 
in which the Wiedemann-Franz law has been found to fail, the present 
authors are rather surprised by the fact that for 33 thermal conductivity 
curves recommended by the TPRC, the averaged value of flel/flth is close to 
unity. Is it possible that the relatively small scatter of the points in the 
Fig. 1 is the result of particular reliability of the TPRC-recommended 
curves? 

Obviously, too little attention has been devoted to the parameters of 
thermal treatment of samples prior to k and p measurements. For example, 
according to Ref. 17, the change of annealing temperature of 6NAg 
samples from 550 to 530~ in both cases 24 h, caused the value of 
kma x to decrease from 146.6 W. cm - -  1 . K 1 at Tma x = 7.14 K to 
137.4 W.cm -1 .K -1 at T m a  x = 7.83 K. Standardization of the thermal 
treatment parameters of metal samples would allow more meaningful com- 
parison of the results from various laboratories. Presently, unification of 
the methods of thermal and electrical conductivity determination does not 
seem possible for various reasons. However, application of Thermal Con- 

8 4 0 / 1 3 / 6 - 1 l  
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ductivity and Electrical Conductivity Measurement Standards, advanced in 
recognized research centers, would increase the reliability and compatibility 
of the obtained results. 
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